
Web Authentication
From Spec to Product

Suby Raman
@subyraman

@subyraman

Why should your organization care about WebAuthn?

Coming up with a development plan for WebAuthn

The design challenges of WebAuthn

Looking Ahead

@subyraman

Why are we excited about WebAuthn?

Why can’t users just remember random passwords?

Why are our dumb users re-using passwords?

Why are our dumb users losing their passwords?

Why can’t the dumb developers just be smarter about handling
passwords?

@subyraman

Empathy.

Web Authentication allows us to

authenticate our users

using public key cryptography.

@subyraman

Hey, if you want to register
send me a public key!

All right!
Creating a
new key

pair…

Okay, take the public key and
the credentialId!

await navigator.credentials.create({
 publicKey: {…}
});

The user creates a key pair and gives us the
public key.

@subyraman

Hey! If you want to authenticate,
sign this data!

Creating
signature
with the
private

key…
Okay, verify this signature with

the matching public key!

await navigator.credentials.get({
 publicKey: {…}
});

The website requests an “assertion” from the
user’s authenticator:

@subyraman

Passwords are a “shared secret.”

Passwords are hard to create
and remember.

Passwords are easily stolen.

Passwords encourage unsafe
re-use.

Passwords are hard to secure.

The credential public key is not
secret.

The authenticator creates a
random and secure credential.

Secure hardware on devices
makes credential theft difficult.

Credentials are scoped to an
origin, making re-use impossible.

The credential public key is not
secret.

@subyraman

@subyraman

@subyraman

@subyraman

@subyraman

Building a plan to integrate
WebAuthn

@subyraman

Development

@subyraman

@subyraman

@subyraman

Programming: First Impressions

@subyraman

\

The WebAuthn First Impression

The WebAuthn First Impression

Breaking down WebAuthn

attestationObject

@subyraman

@subyraman

Recommendation:

Use an extensible library for
processing WebAuthn data

Type coercion
validation

@subyraman

https://github.com/duo-labs/webauthn/

@subyraman

https://github.com/duo-labs/py_webauthn

@subyraman

Recommendation:
Start with Chrome’s Touch ID

implementation.

Built into user’s device
Simple data verification process

@subyraman

@subyraman

Design

@subyraman

@subyraman

What do we even call this thing?

@subyraman

@subyraman

@subyraman

User Agent Implementation Differences

Thanks to Adam Powers

@subyraman

User Agent Implementation Differences

@subyraman

Building a decision engine to help guide users:

@subyraman

Foreseen and unforeseen
challenges

@subyraman

@subyraman

The public key type is “EC2”
The signature algorithm used is “ES256”
The curve type is “P-256”
The value of the public key’s x-coordinate

The value of the public key’s y-coordinate

@subyraman

With U2F:
One Signature Algorithm

@subyraman

With WebAuthn:
Dozens of Signature Algorithms

Attestation

🔖

Attestation is a way to
cryptographically prove that a

keypair came from secure
hardware.

@subyraman

@subyraman

TPM Attestation

@subyraman

Thanks to Adam Powers and Yuriy Ackermann

@subyraman

@subyraman

@subyraman

@subyraman

@subyraman

Whitelisting Authenticators

@subyraman

Rolling out to users

@subyraman

Log Everything

@subyraman

Incrementally add support for:

Browsers
Attestation types
Signature algorithms
Cross-platform vs platform authenticators

@subyraman

Looking Ahead

@subyraman

@subyraman

https://webauthn.guide
coming soon!

https://webauthn.guide

@subyraman

https://webauthn.guide
coming soon!

https://webauthn.guide

@subyraman

https://webauthn.guide
coming soon!

https://webauthn.guide

@subyraman

@subyraman

@subyraman

https://duo.com/blog/passwords-arent-enough-76-of-breaches-exploit-stolen-credentials

Suby Raman
@subyraman

https://webauthn.guide

